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’ 1. Introduction

Given a space S of cumulative distribution functions (cdf's) and
a weak (reflective and transitive) order relation, <, on S, a subclass of
S is called an ordered family of distributions (with respect to G € §)

if it has the form {F € S | F <G}. Two familiar examples of weak

orderings are convex ordering and star ordering which yield the increasing

failure rate (IFR) and increasing failure rate on the average (IFRA)

families when G(x) = 1 - e X.

Weak orderings and the ordered family model assumption have proved to

e

be of considerable importance in the literature: (a) for providing

characterizations of skewness and kurtosis (Van Zwet (1964)) (b) in power

Zn,.u__). &

studies of certain rank tests (Doksum (1969)° as models for the

lifetimes of coherent systems (Birnbaum, Esu. , Jd Marshall (1966)) and
(d) as models for the lifetimes of systems subject to random shocks
(Esuary, Marshall and Proschan (1973) and Barlow and Proschan (1975)).

] . ;;>This paper studies the problem of designing a single stage experi-
o
alpna
ment for the selection of the distribution(s) with the largest a-quantile(s)
&E"
LA
where o €(0,1) is given and when the model assumptions are specified by

0 ek L, 4 T WAL

an ordered family of distributions. More precisely suppose observations

ot ki e ok M.

are to be taken from k populations labeled Hl""’nk' For each 1 in

e A Y F. denote the cdf of population Hi’ (b) (xii: 14j%n}

be a random sample from ﬂi, (c) xa(Fi) be the a-quantile of Fis

(d) F be the cdf with the ith smallest o-quantile, and (e) H(i)

[i]
denote the (unknown) population with cdf F[i]' Then

< < s 1
xa(F[i]) Lok % (F[k]) are the ordered 0-quantiles. Assume samples

. from different ni's are independent, there is no prior knowledge of the




pairing of n, and H(i), the Fi's come from a specified ordered
family of distributions, and the experimenter is interested in selection
of n(k-t+1)""’n(k)’ the t populations with largest o-quantiles.

We adopt the preferred population formulation in which Iy is called a
preferred population if xa(Fi) is '"close" (in a sense made precise in

Section 3) to x“(F ) and consider two classes of selection

[k-t+1]
problems:
1. selection of a subset of prespecified size s(r<t, r<s < k-t+r)
so as to include at least r preferred populations and
2. selection of a random size subset containing at most s(l<s<k)
populations so as to include at least one (r=1l) preferred population.
The problem is to design the experiment so that (1) or (2) is
guaranteed with at least prespecified probability P* no matter what
the true vector of cdf's. This approach combines aspects of Gupta's
subset selection formulation (1956, 65) and Bechhofer's indifference zone
formulation (1954) and will be shown to be a strengthening of the latter.
Previous work on selection procedures for nonparametric problems can
be categorized according to (1) the parameter of interest for selction,
(2) the formulation of the design requirement and (3) the model assump-
tions. One group of papers considers problems of selection for location
parameters or more complicated linear models usually under the assumption
that the error distributions are continuous and symmetric. They include:
Lehmann (1963), Bartlett and Govindarajulu (1968), Randles (1970), Bhapkar
and Gore (1971), Puri and Sen (1972), Ghosh (1973) and Gupta and Huang
(1974). Related papers include Patel (1976) who considers the problem
of selecting the distribution with the largest scale parameter when the

common form of the distribution is assumed to be IFR and Gupta and McDonald
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(1969) who consider selection in terms of an arbitrary parameter under
which the distributions form a stochastically increasing family of distri-
butions. A second group of papers are those which consider selection in
. terms of a-quantiles. Rizvi and Sobel (1967), Rizvi, Sobel and Woodworth
E (1968) and Barlow and Gupta (1969) study subset selection formulations of
%i the problem while Sobel (1967) and Desu and Sobel (1971) use an indifference
zone formulation. For a complete review of the literature see Lee and _ ]
Dudewicz (1974).

In contrast, the present work does not assume the Fi's are
stochastically ordered by a location, scale or other parameter as do the
papers in the first group nor does it assume they are arbitrary continuous
cdf's as do many of the papers in the second group. Rather the ordered
family assumption falls between these two extremes.

Section 2 studies weak orderings and the corresponding ordered 1

7
families. Sections 3 and 4 formulate a fixed size subset selection pro-
blem and a random size subset selection problem respectively and give
their solution for two classes of distributions. Finally Section 5
describes some properties of the two classes of procedures considered in
3
Sections 3 and 4.
ACCESSION for ]
NTIS i‘e Section 1
png Biil Section [ 3
HINANMOUNE™D &1 3
JUSTE ICATION
BY 3
DISTRIDUTION/AVAR ABEITY °L7FS

. Wil T GIAL

|




S

o s o i e S DR B i S il S A N i Sl I L i AR

|
3

2. Weak Orderings and Ordered Families of Distributions

Given a finite or infinite interval, I, of the real line, R, let FI
denote the set of distributions F which satisfy:

(1) F is absolutely continuous with respect to Lebesgue measure,

tt

(2) S(F) = {x € R|F(x+e) - F(x-€) > 0 V € > 0}, the support of F,
is a convex set,
a3 ) B
In particular when I = R and [0,»), FI will be denoted as F and FO

respectively. For F ¢ FI define F—l(y) on [0,1] as F-l(y)

inf{x € RIF(x) > y} where the infimum of the empty set is taken to be +e.
Remark 2.1. For F,G e FI the following hold
(i) S(F) is a closed interval of R
(ii) I(F) = {x ¢ R|0 < F(x) < 1} is an open interval of R

(iii) F is strictly increasing on the open interval I(F)

(iv) F-l(') is continuous and strictly increasing on (0,1)

(v) ¢(x) = G-l(F(x)) is the unique strictly increasing function on
I(F) such that if X has cdf F then ¢(X) has cdf G.

A weak ordering, <, on FI is a relation on FI which is reflexive

and transitive. Every weak ordering < on FI can be "extended" to a

partial order by first defining an equivalence relation ~ on FI by

FvG<=>TF <G and G <F. The resulting set of equivalence classes
{E(F)|F ¢ FI) is partially ordered by the relation < which is well defined
by E(F) < E(G) <= F <G.

We now define a class of weak orderings which is a modification of a
class proposed by Panchapakesan (1969).

Let H be a set of functions h: 12 + I satisfying

4
h(xl,x2) £ max{xl,xz} v (xl,xz) %




PDefinition 2.1. For F.G e FI, F is said to be H~ordered wrt G (written

F <H G) <= G-lF(h(xl,XQ)) < h(G'lF(xl), G_lF(XQ)) vheH and

X)» X, 3 X;» X, and h(x;,x,) e I(F).

Lemma 2.1. H ordering is a weak ordering on FI.

Proof. Reflexivety is straightforward. To show transitivity suppose

F 4,6, 6= J and he e s and=s satisfy x and h(xl,xz) e I(F).

1#%5 1°*2
Then G-lF(xl), G-lF(x2) and G_lF(h(xl,XQ)) € I(G) and hence

| A

=i -1 -1
(2.1) G Fh(xl,xz) h(G F(xl), G F(xz))

| A

max{G'F(x,), GT'F(x,))
1 2
implies h(G_lF(xl), G_lF(XQ)) € I(G) by convexity. So

J_lF(h(xl,xg))

J‘lcc‘lr(h(xl,x2)>

| A

J‘lG(h(G’lF(xl), G_lF(XQ))) by (2.1)

-1 =1 3
< h(yJ F(xl),d F(xg)) since G-<HJ

and the proof is completed.

The motivation for introducing H-ordering is that it provides a convenient

framework for embedding several well-known orderings.

Example 2.1. Let I = [0,») and Hl consist of the single function

h(xl,x2) = ( X - X, y X




Now h(xl,x2) :_max{xl,x2} for any X 9%y 2 0 and so Hl is a weak

ordering on FO' Furthermore

Fey 8o 6 Lr(t-x) < GTlF(t) - 67'F(x) whenever x,t,t-x e I(F)
1

<= G_lF is superadditive on I(F).
-X

In particular F <y G(x) =1 -e = <> F(t-x)F(x) 3_?It) whenever x,t

1
and t - x € I(F) where F(y) = 1 - F(y) <= F is an absolutely continuous
NBU (New Better than Used) distribution with convex support.
Before giving further examples recall the following definitions. For

F,Ge F_ (1) F 1is convex ordered wrt G (F < G) means G’lF(x) is

0
convex on I(F) and (2) F is star ordered wrt G (F <, G) means G-lF(x)

is starshaped on I(F) i.e. G_lF(Ax) f_AG-lF(x) whenever x,Ax ¢ I(F)

and Xe[0,1]. Convex ordering was introduced as an alternative to the
standarized third moment inequality definition of skewness. Namely F -<C G
is interpreted to mean "G is more skewed to the right than F" (see Van Zwet
(1964) pg. 9). Since the star shaped property can be thought of as a
weakening of convexity (see Bruckner and Ostrow (1962)), F <, G can also

be interpreted as an ordering according to skewness. For F,G e F, F is
said to be tail ordered wrt G (F <t G LEE G_lF(x) - X is nondecreasing
on I(F). When F %e © then G 1is interpreted as having heavier tails

than F (see Doksum (1969)).

Example 2.2. Take I = [0,) and H, = {h,[0 <X <1} where
hx(xl,xg) - Axl + (l-k)x2 :_max{xl,xQ} v Ae[0,1]; hence H2 ordering is a

weak ordering. It is straightforward to check that F <H G <=> G-lF(') is
2
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convex on I(F). So H2 yields convex ordering.

Example 2.3. Again let I = [0,#) and define H3 = {hAIO.i A < 1} where

hA(xl’XQ) =S f_max{xl,x2} VvV 0<X<1l and so H_ defines a weak

3

ordering. It is straightforward to verify that H3 yields star ordering.

1

Example 2.4. Choose I = R and Hu = {h6|0 < § < w} where

- W v . . . .
ha(xl,x2) Xy $ :_max{xl,xz} § e [0,»): Hu ordering is a weak ordering

which reduces to tail ordering.

The remainder of this section is devoted to deriving some properties

of sta tail ordering which will be used in the later sections.

Re It is straightforward to show that the set of distributions

equivalent to F € FO under star ordering (F € F under tail ordering) is
E.(F) = {F(6x)[0 < § < =} (Et(F) = {F(x+B8)|B € R}), the set of all scale

changes (location shifts) of F.

Lemma 2.2.

(a) For F,GelF , F < B = G-lF(x)/x is nondecreasing on

0’
R (F) = {x > 0|F(x) < 1}.

for P.6e F, F <t G <= G_lF(x) - x 1is nondecreasing on

R(F) = {x € R|F(x) < 1}.

Proof. Write R'(F) as the disjoint union {x > 0|F(x) = 0} u I(F) and
vx £ {x > 0|F(x) = 0}, G R(x)/x = G—l(O)/x = -o» and the result follows
since G_lF(x)/x is nondecreasing on I(F). The reverse implication is
obvious and the proof for <t is similar.

An important class of distributions preserving weak orderings are the




distributions of the order statistiecs. If X(q) (1<q<n) is the qth order
statistic based on Xl,...,Xn iid F then PF[X(q) < %] = B(F(x);q,n)

where

3 o) .
3 1 A 5
E B(p;q,n) = (n—q)?.q-l 7 [ x4 (1o Yax.

0

Theorem 2.1. IF F, G e FI and F <y G then B(F;q,n) <4 B(G;q,n)

holds v 1 < q < n. The proof is immediate from the definition of H

T TR TR

ordering since G-lF(x) = G-lB_lBF(x) where B(+) and B-l(°) denote

TR

B(x;q,n) and its inverse respectively.
The final part of this section will describe stochastic bounds for
: several classes of distributions. For G in Fo with I(G) = (0,») and

0 < £ < » define

(2.2) Fu(6) = {F e F |F <, 6}

(2.3) Fo(6,8) = {F ¢ Fy(6)|x (F) = g}.

G(Ax) since VA > 0,

Remark 2.3. F,(G) F*(GA) ¥V A > 0 where GA(X)

?'E Gy € E,(6) and FeFu(e) < F < 6<>F < 6 < FefFug).
§
? —x
| Example 2.5. Let G(x) =1 -e or 0 as x>0 or %<0 respectively.
: Then G-l(y) = -2n(1l-y) for 0 <y <1 and F e F(G) < F is continuous
E
on [0,0) and -&n(1-F(x))/x 1is nondecreasing on RY(F) <> F is a
continuous IFRA distribution. In particular F,(G) = F*(GA) ¥A > 0 where
GA(X) =1 = e-Ax’ x > 0.
Associate with F,(G) the families of distribution
k
‘ (2.4) Fo ((x|0) = [o(xe™M(@)/e), <
4 ’ 1 y %8
?- (2.5) F*’L(x|£) = (o % PRVE.
¥ G(xG “(a)/8), x>&
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where 0 < § < =,
- -1 -1
Remark 2.4. G °F, S('|£) and G “F, 2('|E) are starshaped on
k] k]
R+(Fh (-£)) and R+(Fh ('IE)) respectively and x (F, (-[£)) =
*.s %0 o %S
= i ey L . . 4 I
Xa(F*,E( lg)) £. However neituer F*’s( |€) nor F*,z( |g) is in 0

and consequently neither is in F_(G).

Theorem 2.2. For all 0 < £ <o and F ¢ F*(G,g),

F*,s('lg) Ter T Ner F*,L('IE)'

Proof. If RT(F) = (0,M) then x = o= HE) = Bx) = By (x|E) =

Fe 12‘(X{E) =0 and VY0 <x<g<y<M
2

GTIR(x)/x < 67IR(E)/E = 6THw) /e < 6TRR(y) /y

- F(x) < 6(x6 1 (a)/E) < G(y6 H(a)/E) < F(y).

If M = += the proof is complete while if M < +o then Vy > M
Fly) = 1 :_G(yG-l(a)/E) and the result follows. See Figure 2.1.

Since both {F*,S('IE)IO < £ < w} and {F*,Q(-lg){o < g < w} are
(stochastically increasing) scale parameter families the result can be

slightly strengthened as follows.

Coroliary 2.1. For O < E* < § < €

(a) PefF (GE')=>P=<_ F, (°|€) and
W 8t n’p

(B) T F (QE") = F oo (~[E) =% _F
w %,8 st

(-]e)

Remark 2.5. It can be shown that the bounds F, g('li) and F, .
e Y




are tight in the sense that they are the stochastically largest and smallest

distributions respectively satisfying Corollary 2.1.

\
e

G (a)

Figure 2.1

The analagous results for tail ordered families are as follows. For

GeF with I(G) =R and & € R define

Fu(8) = {r ¢ F|r <t G}

.




e R YU A P

F(GE) = (F e Ft(G)Ixu(F)

E

F S(x|€,) a(x + 6 Ha) x<E
1 X>E

P (xlE) 0 X<E
t,2 =
G(x + G (a) - €) X>E.

Example 2.6. When G(x) = l/(l+e-x), x € R then G—l(y) = -gn((1l-y)/y) on

(0,1)

F.(6) = tf‘ e Pl VBRI Xy x50 and te I(F)§)

F(t)/F(t)
(t+x) € I(F) -

where TF(y) = 1 - F(y) is the reliability function of F. In words
Ft(G) is the set of all continuous distributions such that the ratio of

the odds of surviving beyond t+x to the odds of surviving beyond t is

uniformly bounded above (in t) by T

1

Remark 2.6. G F
e t,s

(x|€) - x and G_lFt 2(xIE) -~ x are nondecreasing on
t]

{x € RIFt S(XIE) <t and {x € R|Ft 2(xIE) < 1} respectively and
£ s

xa(Ft,s(.‘g)) z xa(Ft,z

Ft(G)' Both {Ft s('l&)(& e R} and {Ft z(')E)IE € R} are (stochastically

(-|€)) = £ but neither is in F and hence not

increasing) locations parameter families.

. < . .
Theorem 2.3. For all &€ R and F e F (G,8), rt’s( |€) IR Ft,?.( [€)

The proof is similar to that of Theorem 2.3.

R T P AN R I I G
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Corallary 2.2. For &' <& < EY :

, (a) E e Ft(G,E') = F <St

Ft,z(-|£)
113 = .
(b) Fe F (G = Ft’s( lg) <ot -
Finally it should be noted that F_ _(-|€) and F, (&) are the
9 2

stochastically largest and smallest distributions respectively satisfying

Corollary 2.2.
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3. Fixed Size Subset Selection Procedures

3.1 Preferred Population Formuation

When faced with the problem of selecting at least r of the t best
of k populations (1l<r<t<k) an experimenter may well be indifferent
between the selection of one of the t best populations and one of the
(k-ts worst populations when they are sufficiently close together. This
is the rationale of the indifference zone formulation (IZF) of selection
problems in which the procedure is only required to guarantee correct
selection (CS) with prespecified probability, P*, when the tth and
(t+1)St best populations are sufficiently "far" apart (see Mahamunulu
(1967)).

Alternatively, if the tth best and one of the (k-t) worst popula-
tions are sufficiently "close" so that an experimenter would be satisfied
with the selection of either one then one can define a preferred population
as any population satisfying this criterion and a correct selection as the
selection of at least r preferred populations. The preferred populaticn
formulation (PPF) requires the procedure make a correct selection with at
least probability P* no matter what the true vector E of distributions.

Suppose xa(Fi) € = where EZ 1is a known interval of the real line.
Then following Santner (1975) consider measures of closeness to “(k—t+l)
defined in terms of a function p: & = R satisfying:

(3.1} pl*} s continuous

(3.2) plg) >y = inPlE e B} VE € B

(3.3) p(+) is strictly increasing on E' = {£ e E|p(&) > y}

(3.4) p(g) <& vEes'.

Definition 3.1. s is a preferred population (relative to p(:)) ift

xa(Fi) > p(xa(F ).

[k-t+1]




Clearly at least are preferred populations and the true

"(k—t‘fl)’. ..,ﬂ(k)

population configuration will contain between t and k preferred "1'5'

Remark 3.1. The PPF yields a strengthening of the probability guarantee over
the IZF. Consider the problem of selecting the t(r=t) best ﬂi's when

) > p(x (F ))} and

[k-t] o [k-t+1]

Q' = Q\Q' are the indifference zone and preference zone respectively.

the true F e Q = Fk
N I

where Q' = {E € lea(F
The corresponding problem based on the PPF is to select at least
t preferred populations (relative to p(+*)). For F e @ the ¢
best populations are the only preferred ﬂi's and both the IZF and PPF
guarantee their selection with probability P*.  For Fe Q' the PPF
still guarantees the selection of at least t preferred ni's while the
IZF guarantees nothing.

Two specific choices for p(-) are now derived. Recall that for
F e F,.(G) any scale change of F(x), say F(8x), is equivalent to F(x).

Hence we require that L be preferred relative to independent

T(k-t+1)

of the selected measurement units. More precisely this means L is close

to when F. e F,(G,£'/§) and F e F,(G,£/8) independent

T(k-t+1) [k-t+1]
of § >0, i.e. p(+) must satisfy V &', £ ¢ (0,)

£' > p(g) <= £'/6 > p(E/6) ¥ & > 0.

It can be shown that the unique p(-:) satisfying (3.1) - (3.5) is

p(£) = c® where 0 < c® < 1. In the tail ordered case a similar argument

based on the location invariant classes Et(G) leads to the choice

%
p(g) = & - d* where 0 < d* < ». Hence L will be called preferred in

the star (tail) ordered case iff xa(Fi) > C“xa(F[k-t+l]) (xa(F[k-t+l]) - a%,




In the remainder of the paper G 1is a fixed distribution in FO(F)

with I(G) = (0,») (R) in discussions of the star (tail) ordered model.

Let

(3.6) Q,

w
n
L
om
"

(Fis---nF )| F e Fu(G)V i} and

1
o
s |

i

! (3.7) Q (F ,...,Fk)lFi € Ft(G) v il.

it ~ 1

Given t(l<t<k), r(l<r<t), s(r<s<k-t+r) and «(0<a<l) the goal is to

select a subset of size s containing at least r preferred populations

(a correct section). Note that for k - t + r < s <_k a correct selection

must automatically occur. Let Na = min{n > l|l < (n+l)a < n} and for

each n > Na define the procedure.

R (s,n)): Take independent random samples of size n from each population

: and select L Ti S

[k-s+1] where T[l] < e <—T[k] are

the ordered sample a-quantiles T

sT

100" X

; min{ t,s}

Design Requirement: Given P% ( ) (
So j:r

(0 < d® < ») determine the smallest n s Na so that

t)(k—t

k o
3 s_j)/(s),l) and 0 < et <)

SERSEESEE S S

P'EECS’ R(s,m)]> P'v Fe 0,@)

where the event [CS| Rl(s,n)] denotes a correct selection using Rl(s,n).

3.2 Selection from Star Ordered Families

For fixed a €(0,1) it follows without loss of generality from Remark

2.3 that G can be choosen so that G-l(a) = 1. Define the following

subsets of Q,. For 0< ¢ <« and te i< k let




&

GBS it g e R i R e g i o ,“‘,fv‘..: O e T ‘ 1_‘ : .:"ﬁ'L . 5’2“‘4’" R S _ 4 ;. o

R

16
% .
{F e Byix (P 1p) 20 % 0P ea17) < % Fraga1y?) » tolek
(3.9) Q,(i) =
% 2 i
i & fyle =0 e g) < Bl S,
(3.10) 8, , = {Fe Q*lxq(F[k_t+l]) #:Els
(3.11) ,(i,g) = @,(i) N Qe g
k
It follows that Q, = U Q, £ = U Uug@.(i,g) and, for example, ,(i,£)
=050 £>0 i=t

is the set of configurations for which there are exactly 1 preferred
populations and the tth  smallest a-quantile is &.

It is easy to see that for [ e Q,(i) where r+k -s <ic<k

that P [CSlRl(s,n)] = 1., Hence inf P

X Q,

w

[CS[Rl(s,n)] min inf P_[CS[R,(s,n)]

3 iel q,(i) K

where I = {i|]t<i<r +k - s}. For Fef, and ie T define

T(i) = sgmple a-quantile from T(1)?

th
Wi = 8 largest of {T(k-i+l)""’T(k)} and
A, = {wi > at least (rtk-s-i) of T(l)""’T(k-i)}'

Remark 3.2. It can be shown that the Aj's form a nondecreasing sequence
of events and that XA.(Z)’ the characteristic function of Ai’ is non-

i
increasing in any of T(l)""’T(k-i) and is nondecreasing in any of
T(k-i+1)""’T(k)' This latter property and an application of Theorem 2.1
implies that P

Al =E i i ing i At
[ 1] (T)] 1is nonincreasing in any of FEl]’ ’P[k—i]

% E[xAi

and is nondecreasing in any of F[k—i+l]”"’F[k] under stochastic ordering




B a——

% ; <§t (see Mahumunulu (1967) or Alam and Rizi (1966)).

Lemma 3.1. inf P [CSlRl(s,n)] IR [A JiE Corc i Se S0
Q, (1) K a.(i,1) K

Proof. Pick [ e Q*(i,i) then P

E[CSlRl(s,n)] = Pi[Ai] - PK[Wi/E >

at least (r+k-s-i) of T(l)/E, (k )/g] Now Z' = I/E has the

vector of cdf's E'(x) = (Fl(Ex),...,Fkigx)) which is in 9*(i,l) by the

under scale changes and the definition of preferred

equivalence of Fi

m.. 8o PE[Ai] = PE'[Ai] and the proof is complete.

Remark 3.3. An equivalent way of viewing the proof of Lemma 3.1 is as an

The problem is invariant under the group of all

application of invariance.

possible common scale changes of the raw data. Hence the risk under a

0-1 loss structure becomes the probability of incorrect selection and is

constant over orbits - the orbit of E consisting of all common scale

changes of the components of {.

Next a lower bound for P [CSIRl(s,n)] over { € Q, 1 is obtained.
t]

K

Given 1 e I and E e 9,(i,1) it follows from Corollary 2.1 that

Frsq %st Peglla) alsyek i

3 . < o i
(3.12) Py ¢ 1) st 7137 s R-ta 1<)k

’

, for any other j

L F*’s(-lc*) <t Fr37)

since X (F[ 112 <c® for 1 SIxE= 1, 1ex (F[ ] for k-t+1zjek

derarn

and ¢ < xa(F[j]) for all remaining j's. Let F(i) be any configuration
Ly

having k - i, t and i -+t (if i > t) components of the types

Fu z('lc*), F, (+]1) and F, ('lc*) respectively. Then
s “s8 #,5



PpLCS|R (s,n)] = Pg[Ai]

z_PE(i)[Ai] from (3.12) and Remark 3.2
B P{(i)[At] since A, CAi

> P [a, ]

= "F(t) ¢

where the final inequality holds since when i > t the jﬂ‘_(k-—i+l:j:_k—t)

: ; % .
ordered component of '1\"(1) ig Fg S(°]c*)<St F*’l(-lc ), the jfﬁ

L]

ordered component of F(t). -

To calculate the lower bound P )[At] let

E(t

H(y) = B(B(y); k-t-st+r, k-t)
(3.13) ,
J(y) = B(B(y); t-r+l, t)
1
4
where B(y) = B(y;q,n), q = [(n+tl1)a] and [+] denotes the greatest
integer function. Hence H(F,, Q(ylck)) is the cdf of the :
b E ly
ey . ;
(k-t-s+r)XD smallest of {T(l),...,T(k_t)} and J(F*,S(yll)) is the cdf f
< th 3
of the (t-r+1)t? smallest of {T(k-t+l)""’T(k)} all under F(t). 1
Therefore i

rc)

| (R, y(yle*nasce, (y|0) Q
0 ° b

Pr(e)lAed
n

Al 5 b
} H(G(y/c™))dd(a(y)) ‘
c*

+ H(G(1/¢™))(1 - J(a))

» 1
J " H(G(G™ ~(y)/c*))dd(y)
G(c™)

+ H(G(1/¢®))(1-d(®))

F:(p,t,s,k,a,c*) or simply F:.




Vg s ¢

i

-

Since F(t) ¢ Q, (the component distributions are not in F,(G)) it is not
4 %

immediate that Fz is the infimum of the PCS over Q.. The next result

establishes that this is the case.

% %
Theorem 3.1. inf P [CS]Rl(s,n)] = Fn(r,t,s,k,a,c )

o

Proof. From Lemma 3.1 and the discussion above it suffices to exhibit a

ate
w“

sequence of configurations {{1} in @, so that 1lim P [CS]Rl(s,n)] i

o A
A sequence in @, which approximates [F(t) is the obvious candidate. Let

L = [1/c®*]1 + 1 and for j > L define

s (3 -
0 i S j .
Fu () { iy -~ (=791 e - leyg<et
2
G(y/c*) ,c* <y
.
G(Y) sy < 1
Eadh
&y y)
G(1+j(y-1)) 1 <y.
W % ¢ W . 3
Then F, () 5 Fy o [c¥) = HOEy SC)) 3 H(Fy \( [c®)) and

Fos() % Fy (1D = J(F () $3(F, (+]1) where 5 denotes weak
2

S,] s )

convergence of distributions. Furthermore Fl ) € Ft(G,c*) and
: |
F_; €& P (6,1) and so E. with t components F. . and (k-t)
SsJ k) ~nJ 251

components FS 3 is in Qu(t). Therefore
s

et i

i

s
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P. [A,) =J KOy L (9))AICF, 4(y)
N 0

* 00
L b3
= JZ HCE, S(9AICE, (y]1) + L* H(E, (v [*))ad(Fy ()

since Fl j(y) = F*’Z(Y|C*) on [c*,») and
2

Fs,j(y) = F*,s(yll) on [0,1)

%

- = *
] E HOE, S(9)AIE, (1)) + JO HOE, (v [e*))AICF, (y))

since F, Q(YIC*) =0 on [0,c%)
2

>0+ j HE, (v [c*)as(r, (y]1)) = F¥
0 ’ #

where the first convergence follows from dominated convergence since

H(Fz j(y)) >0 a.e. [J(F, S(']l))] on [0,c¥] and the second follows
b |

from the weak convergence of J(Fs (2)) to J(F, S(']l)) and the fact
b

b

that H(F, Z('lc*)) is bounded and continuous a.e. [J(F, s('|l)] on
] b

[0,»). The proof is completed.

It can be shown that P: +1 as n > o and hence (3.8) can be

guaranteed by a finite n for any P* < dis

fok ex!l,‘n(l-a) %
Example 3.1. Given a ¢ (0,1) choose G(x) = 0 ? %"
9

2

> 0
<0

Q, 1is then all configurations of continuous IFRA distributions. Note

.

that G(*) 1is choosen so that G-l(a) = 1. Suppose it is desired to

select at least r =t preferred populations. In this case

s




e R T S

21

) o -l/C*
=t c:': B(B(1 - [1-x] ); k-s, k-t)dB(x)
1-(1-a)

C

B Rl e s, et UL - BladiF

For computational purposes it is desirable to remove the composition of

incomplete beta functions from inside the integral. After an integration

by parts and a change of variables F; becomes

/CN

k-t € - B6i - bi-w° %A - By

s-t, k-s
o dB (

y)

(gl
(3.14) ( )J

a

£ 61 = B = fiea)® 1ITBB(aYy Kos, det)

Expression (3.14%) was evaluated on Cornell University's IBM 370/169

computer using a procedure based on Simpson's rule (see Shampine and
Allen (1973)). Tables 1,2 and 3 give the smallest odd sample sizes

required to meet (3.8) for a = .25(.25).75, c* = .65, .70, P* =

25,0905 .95, k= 2(1)95E = LCD)Ek/200 e = &, s = £(1)[k/2].

One measure of the cost of using the nonparametric procedure

Rl(s,n) is obtained by comparing the sample size required by Rl(s,n)

to achieve a specified P* to that required by the best procedure for

the parametric problem with exponential populations. Suppose Ul has
-x%/ 0,
i

cdf F(xlei) ==L =e y X >0 where ei > 0 but unknown then

1.

x,(F;) = -6, 4n(l-a) = x (F(-+]8,)) > c"x (F et Sk

[k-t+] [k-t+1]

where e[i] is the ith opdered ej' In this case the optimal selection

procedure is the natural procedure based on sample means rather sample




; kKt & 9% .90 .95
g2 39 87 13)
A R | 55 115 163
U 69 135 187
. RN 27 67 103
3 e P 87 155 211
s ) 79 147 203
g L 35 79 119
§ 2 2 103 179 235
T T | 89 159 215
3 e MR 43 gl 131
o TR 23 59 g5
] SR Y 119 195 255
] & 2 .3 59 1¥5 7 185
6 ‘8 % 127 207 267
; O B 97 169 -191
| Tl Y7 99 143
4 N 27 89 - 163
7. '3 "9 127 211 271
e A 3 127 171
R 143 297 287
" e NG 103 477 235
Bl 53 107 151 : .
b | g 31 75 111
= R 23 59 87
P | Bl Ol 139 219 283
| R . 79 139 183
\ IR S 55 99 139
PRt TG 155 239 299
' W SR 91 151 195 g
g & ® 163 247 307 i
4 S SR, | 109 183 243
- Tache GBS 59 115 163
S W 35 83 123
- e T 23 63 g5 !
g 2 2 147 231 . 391 |
g 2 3 87 151 195 !
9 -2 B 59 111 147
R e 167 751 313 _
g . a8 'm 99 163 211 .
9 & 175 263 325
!
Table 3.1. Sample sizes required by R,(s,n) when selecting from ‘

Q, when G(x) =1 - "

with

a

= .25 and c* = .65.




SR

R L i e L e

T T YT

23 :
57
3
c® = .65 c® = .70
P P
k t s .75 .90 .95 75 .90 .95
e At 19 45 67 27 " 65 97
N R 29 59 85 43 85 123
Tl 37 69 97 53 101 141
/i SRR 13 33 51 19 47 13
I 43 79 109 63 117 157
A TI 43 77 105 61 113 153
S S 17 39 59 25 57 85
N 53 91 121 77 133 177
SRR ey 47 83 113 69 121 163
e 21 45 67 31 67 97
el S il 29 47 i7 43 67
g 9 -3 61 101 13l 87 147 191
6 -2 -3 31 57 79 43 83 135
A S 65 107 137 g5 155 199
b B G 51 87 117 75 129 171
4 1 -9 25 51 73 37 73 105
s Al T 13 35 51 19 49 75
e S 67 107 139 97 155 203
T 200 35 65 87 51 95 1.0
;o e 73 115 147 107 169 215
iR ik 53 91 121 79 135 179
3 1 7 27 51 79 41 81 113
T W 17 39 57 23 55 83
- e GO 11 29 s 15 b1 63
vl SO 71 113 145 103 165 211
A S u1l 71 g5 | 59 103 137
[ R 2% 4 69 87 73 101
g8 79 123 155 117 179 225
e 47 77 101 67 131 145
-y S 83 127 159 121 185 231
9 1 i 57 q5 125 83 139 1845
¢ e 3] 59 63 N 0/ 121
9 I S 19 n3 6l 20, 0! 19
g Gl 11 21 ug 17 s 09
K 75 119 149 109 173 219
i Sy 45 77 101 65 111 145
R 29 55 75 13 81 109
. (. SO 85 129 161, 125 189 235
g 3 & 51 83 107 75 121 155
9 n oy 89 135 167 131 193 243

Table 3.2. Sample sizes required by Rl(s,n) when selecting from Q*

when G(x) = 1 - e® with @ = .50 and c" = .65, .70.




=
-+
0

4D

15 33
9% u5
29 53
i} 0
33 59
33 57
13 31
41 69
37 63
197 35
11 23
45 75
23 43
ug 79
37 67
19 39
i1 07

81
2% 49
55 87
] 69
21 4l 61 85
13 29 : u1 61
7 23 ai 47
53 85 125 159
31 53 ; 77 103
19 39 55 75
61 93 f 135 169
35 57 51 83 107
63 95 139 173

93 105 139
23 u5 65 91
15 31 , s 67
11 23 ¢ a5 51
57 89 129 165
33 57 ¢ 83 109
23 43 5 31 59 81
65 97 : 93 1) 177
39 63 ; 5% 91 115
67 101 125 99 147 181

i A 5 ] P Ao W

1
1
AL
2
2
1
2
2
L
2
3
2
=3
3
1
2
3
2
3
3
1
2
3

FWWNNNOHFEFREERONNRFRFHRFRFONONRNRRRERDRFERR R -
TR QNREE O EONE

WWNNNKFEPP=
w

a:)oouo.o.om@wn.owmmoooommmmm\l\’\!\)\i\‘mmm@mmmww:c-z:wro

=
-

Table 3.3. Sample sizes required by Rl(s,n) when selecting from

-%x ., p
when G(x) =1 - e with o= .75 and e¢* = 65, +70.
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a-quantiles (Eaton (1967)). Denote this procedure as RM(s,n). It is

easy seen that for Q = (0,°°)k

inf PB{CSIRM(s,n)} = J H(F(y|c*,n))dJ(F(y|l,n))
Q N 0

y e-w/e wn-l
where T(y|6,n) = I Seem—— e AW,
0 (n-1)! ©

when r = t this integral reduces, after a change of variables, to

1 :
(3.15) (k-s)(:::) J {1- F(CNF—l[xll,nlll,n)}t xk—s—l(l-x)s_tdx. 3
5 :

Expression (3.15) was evaluated using an algorithm based on Simpson's ;

rule. Table 4 contains the smallest odd sample signs required to satisfy

(3.16) inf PyLCS|R,(s,m)] > P
Q N 5

.

for c* = .65, .70, P¥ = .75, .90, .95, k = 2(1)9, r = t = 1(1)[k/2] and
s = t(1)[k/2].
These calculations how that the exponential procedure requires roughly half

as many observations as the non parametric IFRA procedure.

3.3 Selection from Tail Ordered Families

Fix G' € F satisfying I(G') = R and a €(0,1). Choose G r Ef(G')

so that G-l(a) = 0 and for d¥ ¢ (0,o) define




o s e,

P

.75 .90 .95 .75 s .95

=
4]

7 19 31 9 27 43
11 27 41 17 39 59
15 33 y7 23 u7 67

5 15 23 T 21 33
ok 39 53 29 57 77
19 37 51 27 53 73

7 19 29 il 27 41
25 us5 59 37 65 85
21 39 55 31 57 79

9 23 33 13 33 47

5 13 21 “Jl 19 31
29 u9 63 43 s 93
15 29 39 oo 39 55
33 53 67 y7 75 97
23 43 57 33 61 83
11 25 35 17 37 51

7 3137/ 25 g9 23 35
33 53 C 67 47 77 97
17 33 43 25 45 61
37 57 71 53 81 103
25 us 59 35 65 - 85
13 37 39 19 39 55

7 19 29 11 27 41 .

5 13 o, 5 19 29
35 55 71 51 81 103
21 35 L7 29 51 67
13 25 33 17 35 49

61 95 67 87 109
23 37 49 33 55 71.
61 i) 59 89 111
25 y7 61 37 67 89
15 29 u1 21 43 59

9 21 31 13 29 43

5 15 23 b 21 33
37 57 73 53 83 105
23 37 49 31 55 71
15 27 37 21 39 53
yl1 63 79 61 9] 113
25 P ! 53 37 59 75
45 65 81 63 g5 117

DD DO LDV NNINNTINNNDDODODDDOOD LD ERFEFEFEWON
FWWNNNN=HEREEFTWOWONNDDNNFERFRFREFRFONNEFREREFREFRFONNMNEFREENONEENRERFRFPF
FF R FONTONFIFFRXFTFONFONFOWONWONFWWNWONFEFNNRFNNRERRM

-

Table 3.4. Sample sizes required by RM(s,n) when selecting from

exponential populations with a arbitrary and o® = .88, .70,
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1 (3.17) Q = {ref|Ff, <GgvVlc<ic<xkl,
< t ~ W KT - -
2 Q = Q =
(3.18) L ip e 1% (Fry_p417) = €1 28 € R,
3 r
' b .
E | {f e Qtlxa(F[k—i]) APy caqy) - % xw(F[k—i+li)}’ t<i<k
(3181 D pyend 1
% e
{E - Qtlxa(r[k—tﬂ]) i e xa(F[l])} § Ak,
; - ]
¢3..20) Qt(l,E) = Qt(l) th,E'
k
It follows that Qt = Y Qt £ = (W) Qt(i,€). By using location
EER S EeR i=t

invariance arguments similar to the scale invariance arguments of Lemma 3.1

it can be shown that

Lemma 3.2. inf P[CS|R,(s,n)] = min inf P [A;)
Q del . T
Q
0 t(1,0) 1

where Ai and 1 are defined as in subsection 3.2.
From the stochastic bounds developed in Corollary 2.2 for F € Ft(G)

1
and arguments similar to those preceding Theorem 3.1 a tight lower bound, ‘3

17
F » can be constructed for iaf P[CS]Rl(s,n)].
t

s = o SRE. o Shk '
Theorem 3.2. inf P[CS]Rl(s,n)] = PF(t)[At] & Fn " Fn(r,t,s,k,a,d’)

Qt "

i where E(t) is any configuration with t components F,_ (-|s) and

Ty

E | - (k-t) components Fe 2('|—d*) and




R =1
(3.21) F~- = J H(G(G ~(y) + d%))dJ(y)
R igl-d®)

+ H(G(@®))([1 - J(a)].

Remark 3.4 The proof of Theorem 3.2 consists in constructing a sequence

of configurations in Qt such that the corresponding sequence of prob-
abilities of correct selection converge to FE. It can also be shown

that F; +1 as n »>  and hence (3.8) can be guaranteed for any

P* o

28

Al S o 4 o Bk i




i Sl L e s S e A i

e L S A P LI OR L g U winte S ——

29

ot g

4. Random Size Subset Selection Procedures

4.1 Preferred Population Formulation

When the goal of an experiment is to screen a large number of populations
to obtain a more manageable subset containing at least r preferred popula-
tions then the procedure Rl(s,n) has the undesirable characteristic of
always selecting a subset of size s. This section studies the random size
restricted subset selection procedures introduced by Gupta and Santner %\

! (1973) and Santner (1975). These rules are characterized by the properties: j
(1) the experimenter specifies an upper bound, say s, on the size of the i1
selected subset and (2) the procedure is abie to capitalize on configura- :
tions favorable to the experimenter by selecting fewgr than the maximum
number of s w,'s.

1

Following Santner (1975), restricted subset selection procedures will

be defined in terms of a sequence of functions VY = {wn}:zl, Wn: S

{ satisfying:

{ (L) ¥ EielE and ¥n, wn(E) e
4.2) Vn, Wn is continuous and strictly increasing and

(L3 e

tn

s ‘bn(g) FLE L asE R o,

(n)

where p e(l,®) and

(1}

Example 4.1. For

{e(n)} 1is any sequence of positive numbers converging to zero as n + =,

= (0,%) take Y (£) = go°

Example 4.2. For E = R take ¢n(€) = £ + e(n) where e(n) 1is as in

the previous example.

For specified o €(0,1), and each s in {1,...,k}, ¥ satisfying

(4.1)--(4.3) and n > Na define the procedure




SRGRER S W RO

R2(s,w,n): Take independent random samples of size n from each popula-

3 : -1
tion and select T, <> T, > max{T ¥ (T[k])} where

[k-s+1]°
T[l] < e iAT[k] are the ordered values of the sample

a-quantiles Tl"‘ﬂ’Tk'

Design Requirement: Given P (B k), 1 £t <k, 1 <8 <k-tdl;, ¥

and 0 <c® <1 (0 <d® < @) determine the smallest n > N so that
= T

PE;[cs]Rz(s,w,n)] > PY VE e (Q)

where the event [CSlRQ(s,W,n)] occurs iff at least one preferred .
il

is selected.

Remark 4.1. In this formulation LA is preferred <= xa(Fi) >

c*x (F

% [k-t+l])(xa(F[k—t+l]) - d¥) in the star (tail) ordered model.

However only the goal corresponding to r = 1 of Section 3 is discd;;edf
The monotonicity arguments used below in establishing the infimum of the
PCS are invalid when r > 1. When Rz(k—t+l,W,n) selects k-t+l
populations a correct selection automatically occurs and when s = 1 the
rule reduces to Rl(l,n). The results in Sections 4.2 and 4.3 are valid
for 1 €t « k and 1 <8 < k-t+l. The case s = k=t+l can be

easily analysed by straightforward arguments similar to those developed

below.

4,2 Selection from Star Ordered Families

Given a €(0,1) choose G as in Section 3.2 and for 1 <t <k

define Qw, 2(i), 9, . and Q,(i,g) by (3.6), (3.9), (3.10) and (3.11)
L

g
respectively. Clearly P.LCS|R,(s,¥,n)] =1V Fe@. Let
A
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I = {tyosask-1} and for i e I and R € @, define Wi = maX{T(k-i+1)’°"’T(k)}
and
’
{wi > at least (k-s+l-i) of T(l)""’T(k~i);
A e(n) . s .
(4.5) B, = ﬁ W.p > max{T(j)Il_i j < k-i}} » T 64 ak-8
{Wipe(n) Z_max{T(j){l < j < k-i} » k-5 < i < k-1
L -

where as before T(i) is the sample o-quantile with cdf F[i]' Then

Vi e 1 and F e Qi’ PF[CSIRQ(S,W,n)] =P [Bi]. Furthermore the events

K

{Bj} form a nondecreasing sequence and P.[B;] = EF[XB (7)1 is nonincreasing
. v |

in any of F[l]""’F[k—i] and nondecreasing in any of F[k—i+l]""’F[k]

under <__.°
st

Lemma 4.1. inf PF[CSIRQ(S,W,n)] = min inf P[B.].

e & iel @,(i,1)
Proof. It suffices to show inf P.[B,] = inf P.[B.]. When k-stl < i <k-1
Qi) ~ Glt1) n .
and F e Q,(1i,€) then
e(n)

P.[B.] = P_[max(T
i F

/€]k-141 < § < k} > max{T s,

=P '[Bi] where {'(x) = (F(xg),...,Fk(xg)) is in Q,(i,1)

K

as noted in the proof of Lemma 3.1. The proof for the case t < i < k-s

is similar.

Now the events {Ai} and {Bi} possess similar monotonicity properties
and so the argument previously used in the construction of the lower bound

F: remains valid and yields




R e T TR T RO o it i aloa W s RO R TR AN B s 2 A L S i e i o
A i —y G R e i o e R B T AR I G L R G S

- -

. o il %t b
f (4.6)  inf PRICS|R,(s,¥,0)] > P (B ] = RO(t,s,k,a,c™) = R ", says

Qi o

()

where E(t) is defined in Section 3.2.

!
i
The lower bound will now be evaluated. Let T[q] be the qth ordered %
o 2
sample a-quantile, D = {k-t+l,...,k}, P = {1,...,k-t}, for q > t let ?
| {qull £ 9 :_(:::)} be the collection of all subsets of size (g-t) from f
] i
D and let §3 =P - 33. Then ?
| 6
R” = P W =T .5 B.]
n aslk-sal E(t) t Lql? % ?
i
E E e(n)
= p EY ST LN Es T e D > max{T, |1 <m < k-t}]
gukestl Gekaeal Aced w T EREE UERGEE TG o el %
k-t 1
k k q-t q
=ik Lttt Ty = Ty P r £ V)

q=k-s+1 j=k;t+l v=1

e < T

e(n)
() ST VL eS]

TR e T e v A S e Y D

! k -
| = . % q-t % k-q t
] q:k—s+l(q-t)jO{B(F*’l(YIC DD (£, (] ais(r, (v]))
1
L by dbvann T AL )
JHEE L J {B(G(G ~(y)/c*1N T T {(B(e(Z—Lf—)) -
q=k-s+1 ¢ 6(c®) e
G—l( ) k- t
B(G(—C';',:L) 3} 7% a{s(y))
} i -t 1y k= t
? + BeENY D (631 - BY(w)
c n ok
y

L
where Dn(F(y)) = B(F(ype(n)))- B(F(y)). As in the case of Rl(s,n)

this lower bound is tight.
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Theorem 4.1. inf PF[CSIR (s,¥,n)] = R
Q: 2 S

T
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The computation of 1lim P [cs|R,(s,¥,n)] for the sequence ({F.}
3 . 2 ]
JRons ey
displayed in the proof of Theorem 3.1 yields the result. Furthermore

Ri + 1 as n >« and (4.4) can be guaranteed by finite n for any

i

Example 4.3. When Q, is the class of all continuous IFRA distributions

(G(x) = 1 - exﬂn(l-a)) then R:(l,s,k,a,c*) becomes

Kk ™ o % e(n) / = *
1 AT J’ #1B(-(-x)Y ) B (1-%)° /%) Ba-qeoet ke
q=k-s+1 4 1-(1-a)
.7 dB(x) + {B(1-(1-a)Y¢ 131 - B(a)} x
e(n) ”° %
{B(1-(1-a)P /e Fu i)t Y
L 3

Tables of the smallest odd sample sizes required to satisfy (4.u4) were
computed from (4.7) based on p = 4 and e(n) = 1/VYn for a = .25, .50, .75,

c* = .65, .70, P¥ = .75, .90, .95, k = 3(1)9 and s = 2(1)min{t,k-1}.

4,3 Selection from Tail Ordered Families

This section studies the design problem for Rg(s,v,n) when
E 3 Qt and Yn(E) = £ - e(n) where {e(n)} is a sequence of positive
numbers decreasing to zero. The developments follow from modifications

of the arguments of Section 4.2 along the lines of Section 3.3 and hence

only the final results will be stated.




e ‘ 

3y

;

; !

:

g c® = ,65 e = .70

- p* p
‘ g .75 .90 .95 .75 .90 .95

] S0 93 71 107 43 103 155
K 3 31 75 115 w7 111 167
y 2 35 83 127 55 123 183
&% 35 83 127 51 123 183
5 3 39 87 127 55 123 187
Boiiia 43 95 139 65 139 203

: 6 n 39 91 135 59 13 195

5 6 3 43 g5 139 . 63 135 - 1499
& 2 51 107 151 75 155 223

! Tl 43 99 143 67 143 207
y S w7 103 147 69 147 211
R 57 115 163 85 167 235
8 4 Y47 103 151 71 151 219
8 a 51 107 155 75 159 993
g 63 123 V7L 93 179 251
g i 51 107 155 i) 159 999
g 3 55 115 163 83 167 235
a 2 67 131 179 a9 191 263

Table 4.1. Sample sizes required by R2(S,W,n) when selecting from

Q, when G(x) =1 - e X with p = U, e(n) = 1//n and

a = ,25.




| -
E i
b %
E 35 k
4 &
£ : ;
E ! c# = ,65 c* = ,70
|
! P.:: P'
kK 8 .75 .90 .85 .75 .90 .95
: . s 11 31 49 17 45 71
f 5 3 1} 31 49 it 47 73
j B -2 15 39 59 23 55 83
i 5 & 13 33 53 19 49 77 i
i 5 3 13 35 55 21 53 79 {
; 5 2 19 45 65 29 65 95 {
f 6 4 15 37 57 21 55 83 i
i 6 .5 17 39 61 25 59 87 :
; 8.2 23 51 73 35 73 105 :
; 7 4 17 39 gl 59 89 i
i ? '8 19 u3 65 29 63 95 | .
' e 27 55 79 39 81 113 g
{ 8 19 43 63 27 63 93 ;
| 8 3 21 u7 69 31 69 101 :
E ] 82 31 59 83 L5 87 e
- 9 19 us 67 29 67 97 E
i g 3 23 51 73 35 75 107 g
9 2 33 63 87 u9 91 127 %
i
’ i
2 E
Table 4.2. Sample sizes required by Rz(s,\l’,n) when selecting from ;
{ : Q, when G(x) =1 - e ® with p =4, e(n) = 1/¥n and ;
g a = 50, !
- ?‘
- 5 i
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Table 4.3.

= .65 et = 70
P P
k s A i) .90 + 956 S .80 Q5
3 2 7 23 35 11 31 51
L 3 7 23 35 gt 31 51
u 2 11 27 L3 17 39 59
5 L 7 23 35 11 35 6.
3 &) 11 27 39 5 35 55
5 Z 15 33 L7 21 L7 69
6 4 11 27 39 15 35 55
6 3 21 27 u3 17 ui 63
6 2 17 37 53 25 53 i
Vi L Bl 27 L3 15 39 59
7 3 13 3L 47 19 LS5 67
7 2 21 ul 5 29 59 83
8 14 33 31 43 19 u3 63
8 3 15 33 Lg 20 49 71
8 2 21 u3 61 33 63 89
g 4 5 e 31 L7 2. L7 67
9 3 17 37 53 25 53 75
9 2 29 u7 65 37 67 93

with

p = U, e(n)

1/¥n and a

Sample sizes required by R2(S,W,n) from Q,° when
G(x) =1-e%

TS




S g S e e ey

37

? 3 ik
Theorem 4.2, inf P[CS|R2(S,W,n)] = [Bt] b where F(t)

P
Qy : ; F(t) t
is as in Theorem 3.2 and Rn = Rn(t,s,k,a,d") is given by

R Bl x1+a* D19 T (ol  IxIte(n)+a*]) -
G=TE G(-d*)

. el J“ ' ¥

q=k-s+l

i BCGLG Tzl + a* 11 afB(x)}*

+ (B(6[a*1) 1Y T{B(Gle(n)+d*]) - B(GLd*1 I Y 1-8%(a)}

L "

Furthermore R; +1 as n >« and so (4.4) can be guaranteed for any P* 2 1.

Example 4.4. If Qt consists of all configurations with continuous

components having "lighter'" tails than the logistic distribution then
G(x) = [1 + exp(- (x - Qn[(l—a)/a]))]_l. The lower bound RE on the
probability of correctly selecting at least one L having oa-quantile

within d* of the largest a-quantile (t=1) is

PP

E k-1 I X g-1 X g
e J {B(———=———)}* ~{B( o ) -
q=k-s+1 T o x+(l-x)e—d x+(l-x)e-td +e(n)]

B(——*"—E——:Ey)}k-qu(x)
x+(1-x)e

+ (Bl——2 )18 1B (a)}
at(l-a)e

o —4*)}k-q
at(l-a)e

{B( -
iAtmage o

L d

e




Properties of Rl(s,n) and RQ(S,W,n)

The purpose of this section is to describe some small sample performance
characteristics of Rl(s,n) and RQ(S,W,n) including (1) the effect
of skewness and kurtosis of Rl(s,n), (2) their monotonicity properties,

(3) their performance as c® 51 and some large cample properties including
(1) a study of the number of populations selected by Rg(s,w,n) and
(2) a proposal for choosing the sequence VY.

The first set of results show that the more skewed or the heavier the
tails of che component Fi's the smaller the probability of correct
selection using Rl(s,n). The analysis follows Doksum (1969) who used
weak orderings to study the effects of skewness and kurtosis on the power
of monotone rank tests. It has previously been established in Remark 3.2
that the "closer together" the preferred and nonpreferred populations are
stochastically, the smaller the PCS. In studying the effects of skewness
and kurtosis it is necessary to eliminate this stochastic effect by restrict-
ing attention to configurations of distributions differing only in scale
or location. In this set up the resulting scale or location parameters
are measures of "stochastic distance." For 1< t < k and

iel ={ift< i< rtk-s} let Di {éi = (Gl,...,dk)lm >8,2 8,2

i-dk-i = L > 6k—i+l > e > K 0 and c” > § (ol } and for

k-t+l ~ k-i+l

Fe F0 and Qievi let f(ﬁi) = «..sF. ) where F .(x) = F(ij).

Gk 53

Remark 5.1. If Fe FO has F(£) = a then Xa‘FS ) = g/Gj. Hence

J
{1%1) contains exactly 1 preferred populations and F[j] = st.

Theorem 5.1 If F, He FO satisfy F <, H and either H(x) < 1 yxe R

or F(x)<¢e 1L Vxe R then Y iel and 'z\\lie Di

RN WY i s o YO

e P g T A AT S 1
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PE(A')[CS|Rl(s,n)] > P [CS|Rl(s,n)]

Lt ﬁ(éi)

Proof. Suppose T(j) has cdf B(F6 ), 1 <j < k, and define
J

] = —d 2 =il
(5.1) T(j) = [B(H)] B(F(T(j))) = H F(T(j)) and
(5.2) Tt = [B(H, )11 B(F, (T,..)) = H1F(s.T,.\)/6
g () 6j 6j Gre s TG )
It follows that TES) has cdf B(Héj) for- 1 <j <k and Tzk—i) =
Tzi—i) has cdf B(H) since Gk—i =514

Since Gj e (0,1) " for leitl < § <k it follows from Lemma 2.2 that

| A

S -1 s
(5.3) Tegy = H F(Te5)) > HOR(S,T )/, = (L
G Pr .
provided T(j) and GjT(j) € R (F). Now GjT(j) has distn B(F) hence
+ ) =
6jT(j) e R (E) a.s. (Fdj). E R ()T e < then T(j) e R(F) =
(0,@) while if H(x) <1V x <= then Ty, ¢ R'(F) = F(T(5) =
1 = sz) = H—l(l) = o. In either case (5.3) holds a.s. (F6 ). Since
J
1< 6j for 1 < j < k-i it also follows from O f-T(j) f-ajT(j) that
(5.4) T, = HIR(T,..) < HAF(6.T, . )/6, = T!!
(3) 3)" = i ) e (3)

hollds as8v (E. )5

S,
4

Because Xp (+) depends only on the ranks of the T(i)'s and

i

=k 9 s ¢ s § $
H "F(+) 1is strictly increasing on I(F) and nondecreasing on (0,») it

can be seen that




!
f
4
i
4
|
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(5.5) x&i(T(l)""’T(k)) = XAi(Tél),...,TEk)) hence

(5.6) (T SenneiE ) > (G R e
B, 4L (i)’ = 8.7 (1) (
holds a.s. (Eféi)) from (5.3), (5.4) and (5.5). Taking expectations

of both sides of (5.6) wrt E}Qi) and recalling that TZ%) has cdf

B(HG ) completes the proof.
3

Remark 5.2. If R (F) = (o, bp) and rRY(H) - (0,b,) where max(bp,b,) < w

then (5.3) need not hold for sj e (0,1) and hence the proof is not
valid in this case.

The results describing the effects of kurtosis on F

o)

will now be stated. For F, H ¢ F recall that F = H means that
has heavier tails than F. For 6 e R and F e F let Fe(x) = F(x+6)
and for i € I define Fi =BG (el,...,ek)lw > By 285 > eu BB, F 0 >

L

£ %
ek_i+l A e :'Gk > —oy -4 3_ek_t+l > ek—i+l - d*} and for "F & F

and 31 € Fi let {(gi) = (Fel,...,Pek). The configuration {(gi) contains
e

exactly 1 ﬁippefepred populations. The following theorem shows the

heavier the tails of the population distributions the smaller the probability

of a correct selection.

Theorem 5.2. If F, He F satisfy F e H and either F(x) <1V x¢e R
or H(x) <1 VYxeR then Viegl and O, e F.
~d 1

Pr(o, LCSIRy(£:m)] > By(q y[CS|R (s,m)].
vl A oAl

Remark 5.3. The proofs of Theorems 5.1 and 5.2 are not valid for the
procedure R?(s,W,n) because the characteristic functions of the events

Bi do not depend only on the ranks of the T( L -

3)




The monotonicity properties of Rl(s,n) and RQ(S,W,n) will next
be investigated. Fix any r, 1 <r :.min{t,s} when referring to Rl(s,n) :
and r=1 when referring to Rz(s,w,n). Given an arbitrary selcction
procedure P and any integer 1 satisfying r €£i <k let

(5.7) P{[Si]P] = P[P selects at least r of (s ]

s e o a iy
~ l) (Ji)

for any Si = {jl""’ji} & ... ..0k} of size 1. Foria given Si let ;

. c e
j[l] o s J[i] denote the ourdered components of Si'

Definition 5.1. P is monotone wrt Q iff V i, r < i < k and 5 )

[N - X o 5 .
P£[Si|P] 2 PE[Silpj whenever Jp.q < 3f,qV & 1< <.

Recall that for a given set of configurations @, p(+) satisfying
(3.1)-(3.4) and t < k that @(i), t < i < k, is the subset of @ containing

exactly 1 preferred populations.

Definition 5.2. P is weakly monotone wrt @ iff Y, txil<k and

5 e Q(1), PF[Silp] :_PE[SE!P] whenever Si L (si n Sé) Gl Solk=a ]} and

Ly 1]
S% - (S{ n SE) < {k-i+l,...,k} where - denotes set subtraction.

P

Remark 5.4. The standard definitions of monotonicity used in parametric
problems differ from those given here. In particular Definition 4.1 of
monotonicity in Santner (1975) is a special case (i = r = 1) of the

present definition. Also note that monotonicity implies weak monotonicity.

Lemma 5.1 Any procedure P in {Rl(s,n)ln > Nu} or in {Rz(s,w,n)]n > Na}

must satisfy P,IC[SJ'.IP] < PE,[SilP] Vi,r<ic<k and 'I:, Ev e Q(F) =
k o

RO O o j : . , j ¢ cos - Sse
F ! F[]] st []] Ve S]_ and F[]] <St F[]] Yo JE S {19 ,k} Sl

b 7
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The result is immediate since [SilRl(s,n)] = [Rl(s,n) selects at least

r of T3y j e Si] and [SilRQ(s,\P,n)] = [R2(s,\l’,n) selects at

least one of “(j)’ j e Si] are nondecreasing in any of T(j)’ j e Si

and nonincreasing in any of T(j)’ j e Si‘

Some additional notation will now be introduced. Let

Q. = {g € n(F)|r[l] g 1" r[2] K % F[k]},
(

{f e Q(F)Ixa(f‘[k_i]) jP(XQ(F[k-t+1])) i xa(F[k—id-l]);

min{F_ (v)!l o<k-i} > ma’({rfﬂ,](y)!k-i<2<k} Vye R} |
QR(l) = <

Tgr ® < 1% k-1

L{£ € Q(F)ln(xa(F[k-ti—l])) < xa(F[l])} for i=k,
k
and QR = il:Jt QR(i). Note that Qst (= QR.

Theorem 5.3. The classes of procedures {Rl(s,n)ln > Na} and

{RQ(S,‘{',n)In > Na} are all monotone wrt any &, ©Q_ . and weakly

i

monotone wrt any 92 c QR.

Proof. To show monotonicity it suffices to consider the following case.

Fix Ete,rf_iik, SiC{l,...,k}, j €S, and m > j with megi and

let S} =58, U {m}-{3}. Lemma 5.1 implies




Pz[silRl(s,n)J = P[Si|Rl(s,n)]
(F[l],..,F[j],..,F[m],..,F[k])

de oot

| < PLS;|R (s,n)]
(P[l]""F[m]""F[m]""F[k])

= P[S}[R, (s,n)]
(F[l]""F[m]"”F[m]""F[k]) %

<P [Si’Rl(s,n)]

3

Since RQ(S,W,n) satisfies Lemma 5.1 the same proof also shows that it

is monotone wrt ;- The proofs that Rl(s,n) and RQ(S,W,n) are

‘ weakly monotone wrt Q, are similar.

Remark 5.5. In most parametric selection problems where the scalar of

interest, say Ays is estimated by Ti having cdf P(-]Ai) the following

holds: a; < Ay = P(-Ixi) <t F(-|Aj) and hence the stronger property of

monotonicity holds. However x (F.) < x (F.) ¥ F. < _ F. and hence the
(5] kit o) 5,0 Sspes e

property of weak monotonicity is introduced here. An example will be

given later to show that neither Rl(s,n) nor R2(s,W,n) is even

weakly monotone wrt §ly oOr Qt.

Remark 5.6. Since FI c F for any internal I € R, Theorem 5.3 holds if

Q. and Q. are defined as the appropriate subscts of FI rather than

B

The next result, obtainable from straightforward computations, describes

the behavior cof the infimum of P[CSlRl(s,n)] over {, as c® increases

: = > S 9

Lemma 5.2. Llim inf P[CSIRl(s,n)] = B[B[®]; k-t-st+r, k-t] x
PRI cs’c-rl_Q*

k
s

t t i k
j)jgp(j_r)/(k-t-s+]-l)(S+t_j)

(1 - B[B(&); t-r+l, t]) < (k-t-s+r-1)(
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When r=t the right hand side reduces to (Z:t)/(g) which is the
probability of making a correct selection by randomly selecting s popula-
tions when exactly t are preferred. So for any fixed sample size n > N
there exists c¥ sufficiently close to 1 and an E e Q.(t) for which
PF[Cisl(s,n)] < PF[CS| choose s populations at random]. To gain an
N

intuitive feel for this result choose an artitrary E € Q*(t,l). Then

¥V xe[c*,1]
(5.9) F[j](x) > F[i](x) vl < gkt and  k-t+l < i <k.

However (5.9) need not hold for x¢ [c¥,1]. In fact given e > 0 there

exists E = {(e)e Q,(t,1) such that for all x¢ [c*-e, 1+e]
(5.10) F[j](x) <Fr7x) v1<3 <kt and k-t+l < i <k,

In such a case unless n 1is sufficiently large to detect the situation
in [¢*,1]1 the procedure Rl(s,n) will tend to reflect (5.10) and choose
populatiens in {"(l)""’m(k-t)}'

The preceding argument can be used to show that Rl(t,n) is not
weakly monotone wrt Q.. For fixed n and c® sufficiently close to 1

choose E € Q*(t) such that

’ k
(5.11) PE[CS}KI(t,n)] s Pg[kthl(t,n)] < /)

k s
where k. = {k-t+1,...,k}. Let {i(l)ll < % < ()} be the collection of
- e SR

all sets of size t from {l,...,k}. Then

a
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()

Pg[@(ﬂ)lRl(t,n)] =1 and (5.11) => 3 a j§%(g)?

2
= M X

2=

o k
- P’\_IP[,]\‘ (MIRl(t,n)] > /() > P'E[}\('thl(t,n)]

and hence Rl(t,n) is not weakly monotone. Similar examples exist when
Q% or Rl(s,n) is replaced by Qt or RQ(S,W,n) respectively.
Some results will now be developed for the number of populations

(T, 031

w—l
[k-s+1]1> "n
EF[E(i,n)] and
k N
Sta¥'s ¥R (T)  the number of populations selected by RQ(S,W,n). It
i=1 E(i,n)
is straightforward to obtain an expression for EF[S(n)] for arbitrary
1KY

selected by RQ(S,W,n). Let E(i,n) = [T(i) > max{T (k]

1]

be the event that m(i) is selected, P(i,n)

5 based on this representation for S(n).
For all Fe F and ae(0,1) it is well known that T(i) ﬁn»xa(F)
L

where T(i) A has cdf B[F(y);q,nl(n > Na)' The following results are

a direct consequence of this fact and the proof of Theorem 5.2 and Corollaries

5.1 and 5.2 of Santner (1975).

Theorem S.4. For any F e @(F) 2 x (Fr, 1) > X (Fpy 19)

= -
6L), Pl L LT e

2
€2) 'Z.i(n) l"*{l s a1 =T ) as n + ® and
Os 4 kS b
2

LZ
(3} S(n) & 1 and E_[S(n)]»1 as n > ® where — denotes

3

B | convergence in the L? norm.

The final topic of this section is a proposal for choosing the constant

e(n)

pe(l,?) when the sequence Wn(£)= Ep is used to determine the rule

RQ(S,W,n). The discussion is limited to the star ordered case but similar

. results hold for the tail ordered case.




Let [NPS|R2(S,W,n)] = [R2(S,W,n) selects at least one non preferred

population] and for Pe (1,°) let n(p) be the smallest n > N,

satisfying both

(5.12) inf P_ICS|R,(s,¥,n)] > P* and
R ~

(5.13) sup PLINPS|R,(s,¥,n)] < €*
Q,

for specified e®e(0,1) and P¥*e (1/k,1). The optimal choice of »p

minimizes n(p). Arguments similar to those of Section 4.2 show the

supremum of (5.13) occurs at {1,1). Calculation gives

B 3 e(n)| &yy,k-1
(5.14) Pg(l’l)[NPS|R2(s,W,n)] = 1-JO{B(F*’2(y/p "))} dB(F*,S(y[l))

3 1 f s el

= J [B(G(y/c*p ))1" “dB(G(y))

% 1/v/n
c’p
s § - [Ba(1/c*oY ™)) 17 1 - B(a)] e A
L_l ,c*pl/fﬁ 5

Remark 5.8. For fixed pe (l,») the righthand side of (5.14) converges
to zero as n + ® and hence V ¢* e (0,1) 3 n > N, satisfying (5.13).

For each pe (l,») let nl(p) be the smallest n > Na satisfying
(5.12) and let n2(p) be the smallest n > N satisfying (5.13). Since

both sup PF[NPS|R2(S,W,n)] and inf PF[CsiRz(s,Y,n)] are nondecreasing
Q o ") n.t‘, v

in p it follows that nl(o) is nonincreasing in p and n2(p) is

nondecreasing in p. An optimal choice of o is 0* such that
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B ot i ikl

el

(5.15) max{nl(o*),nQ(p*)} = min max{nl(o),nQ(o)}.
1<p<e>

The solution of (5.15) can be obtained via the same techniques employed

in the construction of Tables 4.1 - 4.3 (see Hooper (1977)).
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